
FIR filter design with Julia

Matti Pastell

21th April 2016

1 Introduction

This an example of a julia script that can be published using Weave. The script can be
executed normally using Julia or published to HTML or pdf with Weave. Text is written in
markdown in lines starting with ”#' ” and code is executed and results are included in the
published document.
Notice that you don’t need to define chunk options, but you can using #+. just before code
e.g. #+ term=True, caption='Fancy plots.'. If you’re viewing the published version
have a look at the source to see the markup.

2 FIR Filter Design

We’ll implement lowpass, highpass and ’ bandpass FIR filters. If you want to read more about
DSP I highly recommend The Scientist and Engineer’s Guide to Digital Signal Processing
which is freely available online.

2.1 Calculating frequency response

DSP.jl package doesn’t (yet) have a method to calculate the the frequency response of a FIR
filter so we define it:
using Plots, DSP
gr()

function FIRfreqz(b::Array, w = range(0, stop=π, length=1024))
n = length(w)
h = Array{ComplexF32}(undef, n)
sw = 0
for i = 1:n
for j = 1:length(b)

sw += b[j]*exp(-im*w[i])^-j
end
h[i] = sw
sw = 0

end
return h

end

1

http://mpastell.github.io/Weave.jl/latest/usage/
FIR_design_plots.jl
http://www.dspguide.com/


FIRfreqz (generic function with 2 methods)

2.2 Design Lowpass FIR filter

Designing a lowpass FIR filter is very simple to do with DSP.jl, all you need to do is to define
the window length, cut off frequency and the window. We will define a lowpass filter with
cut off frequency at 5Hz for a signal sampled at 20 Hz. We will use the Hamming window,
which is defined as: w(n) = α − β cos 2πn

N−1 , where α = 0.54 and β = 0.46
fs = 20
f = digitalfilter(Lowpass(5, fs = fs), FIRWindow(hamming(61)))
w = range(0, stop=pi, length=1024)
h = FIRfreqz(f, w)

1024-element Array{Complex{Float32},1}:
1.0f0 + 0.0f0im

0.99546844f0 + 0.095055714f0im
0.98191506f0 + 0.1892486f0im
0.95946306f0 + 0.28172377f0im
0.9283168f0 + 0.37164196f0im
0.8887594f0 + 0.45818728f0im

0.84115064f0 + 0.54057467f0im
0.7859234f0 + 0.618057f0im

0.72357976f0 + 0.6899319f0im
0.65468615f0 + 0.7555481f0im

...
0.00043952762f0 - 0.00041908873f0im
0.0005152718f0 - 0.00040521423f0im
0.0005873293f0 - 0.00037745363f0im
0.0006531789f0 - 0.0003367371f0im
0.0007105166f0 - 0.00028444792f0im
0.0007573364f0 - 0.00022237403f0im
0.0007920005f0 - 0.00015264557f0im
0.0008132961f0 - 7.766036f-5im
0.0008204784f0 - 3.1148685f-18im

2.3 Plot the frequency and impulse response

The next code chunk is executed in term mode, see the script for syntax.
julia> h_db = log10.(abs.(h));

julia> ws = w/pi*(fs/2)
0.0:0.009775171065493646:10.0

plot(ws, h_db,
xlabel = "Frequency (Hz)", ylabel = "Magnitude (db)")

2

FIR_design.jl


0.0 2.5 5.0 7.5 10.0

-5

-4

-3

-2

-1

0

Frequency (Hz)

M
ag

ni
tu

de
 (

db
)

y1

And again with default options
h_phase = unwrap(-atan.(imag.(h),real.(h)))
plot(ws, h_phase,

xlabel = "Frequency (Hz)", ylabel = "Phase (radians)")

0.0 2.5 5.0 7.5 10.0

-50

-40

-30

-20

-10

0

Frequency (Hz)

P
ha

se
 (

ra
di

an
s)

y1

3


	Introduction
	FIR Filter Design
	Calculating frequency response
	Design Lowpass FIR filter
	Plot the frequency and impulse response


